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APPLICATION OF THE RATE DIAGRAM TECHIrqIE TO THE

ANALYSIS AND DESIGN OF SPACE VEHICLE ON-OFF

ATTITUDE CONTROL SYSTEMS

H. Patapoff

ABSTRACT

Preliminary single axis analysis and design of a space vehicle control system,

consisting of a torque producing device and a dead-bard within which there

are no externally or internally applied torques, can be accomplished quite

effectively by a simple graphical technique termed the "Rate Diagram" method.

Two characteristics of typical space vehicle attitude control problems which

make this method effective are the uniamped rigid body motion of the vehicle

and the associated low angular rates. These characteristics satisfy the two

basic assumptions required for the use of this technique; namely, that the

vehicle angular acceleration is proportional. to the applied torque, and that

system transients effectively decay prior to control torque application. The

system, exclusive of the vehicle dynamics, can be of any order, thus allow-

ing sensor dynamics, shaping networks, control, torque characteristics, etc.,

to be included.

A "Rate Diagram" is simply a plot of the vehicle angular rate at control

torque removal versus the rate at torque application. Information regarding

system stability, transient respons,, and limit cycle behavior can be ob-

* Member of the Technical Ctaff
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tained directly from such a diagram. This diagram can be constructed with

relative ease through the use of the analytical relationships developed and

presented in this paper. In addition, these relationships allow the analy-

tical determination of limit cycle amplitude and period.

This graphical method of analysis can be quite effective as a design tool

in designing systems to meet specified performance requirements. As system

parameters or control torque characteristics are varied, the resulting

changes in system behavior can be noted visually by the corresponding

changes in the Rate Diagram. The interpretation of a Rate Diagram for

analysis and design purposes is discussed, and a detailed treatment of an

example space vehicle control system problem to exemplify this technique is

included.

INTRODUCTION

On-off reaction control systems have found wide application in the field

of space vehicle attitude control. This control method is particularly

attractive because of its inherent simplicity and relatively high relia-

bility, being most effective and economical in cases were only relatively

smal.l correcting torques are necessary to maintain attitude control -

especially in cases where the allowable attitude excursions are relatively

large.

The control torque generators may be either torque producing devices which

change the total vehicle anrulr momentum in inertial space, or momentum

storage devices wiich transfer angiillar momentum betweei the vehicle and

rotating inertias vithin the vehicl.e. The most commonly used torque pro-

ducing devices are of the mass ejection type. Compressed gases, liquid

2
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vaporization, or the more sophisticated, ion-generation are examples. The

moct common momentum storage device is the well known reaction wheel.

One of the basic difficulties associated with such nonlinear control systems

is the lack of available analysis or synthesis techniquet which are suitable

for the practicing control engineer. One approach is to treat the problem

as a conventioftal one applicable, say, to phase pl-ne analysis, ignoring

effects which make the problem ccnplicated, such as actuator and sensor

dynamics. If there are no serious problems associated with such an over-

simplified case, it is then hoped that the results will serve as a sort

of first approximation to the "real" solution.

A technique is presented in this paper in which the performance of space

vehicle control systems can be analyzed without the need of over-simplifying

the control problem. Actuator and sensor dyniaics and shaping filters

can be included in ouch an analysis. This technique io, however, based

upon two major assumptions; namely, that aJ.1. transients in the system

effectively decay prior to control. torque command, and that the vehicle

dynamics can be represented as a double lntegration of the control torque.

These two asoumptions have, in the p nt, bcen valid in numerous space

vehicle control problems.

SYSI114 DESCRIVIIPON

A block diagram of the on-off control oysbern considered appears in Figure 1.

I is the moment of inertia of the vehicle, whoso angular acceleration is

proportional to the control torqe, 'I . Vie vehicle attitude, Q, is sensedS C

and compared with the cotmnandcd att itud)e, c . The resu].ting error signal

is filtercd and fed to the switch. The switch has a rlead-spnce of + PD

3
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and a per-unit hysteresis 11. The system operation can be explained with

the aid of the phase-plane trajectory of Figure 2. Assume that the vehicle

rotates at an angular rate, 0 and that the output signal of the filter

lies within the dead space of the switch. As the vehicle rotates, the an-

gular error increases until the filter output becomes 0D' at which time

switch closure occurs. This corresponds to point I of Figure 2. TA seconds

after switch closure, control torque is applied which tends to reverse the

direction of travel, corresponding to point 2. The transportation delay

time, TA' is assumed to be constant. Control torque is applied to the

vehicle until the output of the filter reduces to the value QD(l-h), at

which time the switch opens. This corresponds to point 3. Control torque

is not removed until TR seconds after switch opening, corresponding to

point 4. The filter output is again within the dead-space of the switch,

and the vehicle rotation has been reversed at a rate, 0 . This sequence

is now repeated. If the vehicle rotation has not been reversed after

torque removal, then torque will again be applied until reversal of rotation

does occur. An example phase-plane trajectory for this occurance is shu.ii

in Figure 3.

The filter is assumed to have a rational algebraic transfer function (with

poles in the left half s plane) with unity zero frequency gain. The actuator

and sensor dynamics are included in the filter transfer function.

The control torque build-up and tail-off characteristics are assumed to be

the same for either positive or negative vehicle accelerations. Figure 4

shows typical torque characteristics for a constant torque generator. For

convenience the control torque tail-off characteristics are included in the

time delay, T R For the typical case of Figure 4 the tail-off character-

'4
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istics are independent of the switch-off time nnce full torque has been

achieved. If shut-off occurs prior to full torque build-upor, in the

general case, if tail-off characteristics are a function of the control

torque "on-time", the necessary modification of TR vs. control torque

"on-time" can be determined experimentally.

THE RATE DIAGRAM

Definition

A rate diagram is simply a plot of the vehicle angular rate at control

torque removal, if, versus the rate at control torque application, 6o"

Construction

Analytical expressions for use in constructing such a diagram are derived

in the Appendix.

Since the control system characteristics, except for sign, are assumed

identical for both positive and negative vehicle rotations, it is suff-

icient to construct rate diagrams only for positive values of 0 . It0

is sufficient to know only the angular rate at torque removal, Of, re-

lative to 9 •

Due to the fact that the control torque tends to reverse the direction of

travel, the vehicle final angular rate, 6f, for an infinitesimlly small

positive initial rate, o, is negative. Also, if the final rate has the

same sign as the initial rate, its magnitude will be less than that of

the initial rate. This, in effect, means that the rate curve (for posi-

tive'o 4
0 ) always lies below the line 4o - @f = 0.

5
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Interpretation

1. Stability

The stability of the control system can be determined by the addition

of the line, 6o + 9f = 0, (which will be termed the "minus-one" line)

to the rate diagram. If the rate curve lies everywhere above this line,

the rate amplitude continually decreases, indicating a stable system.

If the rate curve lies everywhere below this line, then the rate

amplitude continually increases, indicating an unstable system.

Example diagrams appear in Figure 5.

In general, the "minus-one" line (6o + if = 0) will intersect the

rate curve, indicating regions of stability and instability. All

points of intersection indicate the existence of symetrical limit

cycles, since if = - io. Whether these limit cycles are stable or

unstable depends upon the manner in which the rate curve inter-

sects the minus-one line. Unsymmetrical limit cycles (where the

magnitudes of the initial and final rates are unequal) can be found,

if they exist, by constructing lines perpendicular to the minus-one

line. If any of these lines intersects the rate curve at more than

one point, and if two points of intersection are equidistant from

the minus-one line, then an unsymmetrical limit cycle is indicated.

Reference to Figure 6b shows that points 1 and 2 correspond to an

unsynAetrical limit cycle. The existence and stability of such limit

cycle behavior will not be discussed in this paper.

2. Synmetrical Limit Cycles

Consider the example rate diagram of Figure 6a. The two points of

6
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intersection indicate the existence of symmetrical limit cycles.

Points 1 and 2 represent a stable and unstable limit cycle, res-

pectively. Considering point 1, a slight decrease in rate amplitude

results in a build-up of amplitude, and a slight increase results

in a decrease in amplitude. The system, then, undergoes stable

oscillations in the vicinity of point 1. For point 2, a slight

increase in rate amplitude results in a continual rate build-up,

indicating an unstable system for rates above that corre3ponding

to point 2. A slight decrease in rate amplitude results in a rate

decrease until point 1 is reached.

The amplitudes of the limit cycle rates can be read directly from

the rate diagram. If, however, the limit cycle rate amplitude is

of sole interest (assuming knowledge of existence and stability),

it can be determined analytically by use of equations (A-13), (A-15),

and (A-16) derived in the Appendix.

For example, assuming a step function for the control torque character-

istics, the limit cycle rate amplitude, iLC, is determined using

equation (A-15):

- h 19) 9LC IrA + LC (1)

where

g (t) A0 'r -1 Fs) t 2
7 S3  t t

7
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Expressing F(s) in the form:

A s m. + A 2  s + I
F(s) M -m (3)

Bsn +B .i + ..... +2s + Bs + i

or,
m

TF(l + Tzs)
F(s) i()

n

7Tf(I + )pj )
J=l

and expanding F(s) into partial fractions (assuming that the order
63

of the denominator of F(s) is greater than that of the numerator):
s3

F~) 1 C 2 C 1K
sa s s l+r s

gives:

n t
(s ) t 2  C tK -
S3 2 - C2t + l+" pi 6

j =-, Pi

The partial fraction coefficients of equation (5) can be determined

from the following relationships:

C2 = A 1  (7)

C1  A2  B2 - BI (A I-B.) (8)

8
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where:
m

A, = T 1(9)

n

J=l

m m

A = E(Tz )

n n

B2  =rp -Z *Pj P (z
1=1 J=l

ifi

ir F(s) contains simple poles:

Pj

n

C 1  E Tp(15)

J-1i P

9
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Combining equations (1), (2), and (6):

1 n kK tR -L

LC + R 2 2Z C - e T( (16)

where: 20

t LC(17)LC A.

Assuming simple poles for F(s), and substituting equation (15) into

(16):

jhi aj (1e (18)
;LC I ~hD ' kTRc2 - 2 E Xo jpi -

If F(s) is simply a pure lead,

F(s) = 1+T 1 (19)

then Equation (18) reduces to the algebraic relation:

m ohoD X0 TR
LC= -77 (4 7 +T ) (20)

where

m = 1 (21)

02
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If F(s) is a lead-lag filter,

1 + is

F(s) = 1 (22)

1 + +2

then Equation (18) becomes:

6 lhQD + XT1 (2 MlX 2(T1- 2) ( 1 -- a (23)

LC 2 7 - 2

where m 1 (24)
1l : , + TR)

i 2" 2

1 2L

a 7 T X - TR (25)

Since the term, a, in PEquation (23) is a function of LC a graphical

or iterative solution for Q4,C is necessary.

The maximum excursion of the vehicle, @M' (see Figure ') is given by

the relation:

@LC _ LC 
(26)

QM OD FK_ m
0

where

m 1 (27)
2 "A

11
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Here, -m is the slope of the control torque "on" line. Because of

the assumption that transients effectively decay prior to switch-on,

these "on" lines, which intersect the 0 axis at + D, can be con-

structed in the phase-plane. The construction of "off" curves,

however, become quite tedious.

The period, T1C, of the limit cycle is determined by noting (see

Figure 7) that the time interval between points 1 and 2 is simply

9o0/LC' where

go = 9 (28)D m

The total "off-time", Toff, per cycle is then:

Toff D 1 (29)6LC m (2

The time interval between points 2 and 3 is equal to tLC + xR' where
tLC is the time at switch opening, and is given by equation for

the case of a step torque. For the more general case tLC and 9ILC are

related by:

tIC + TR
@IC -" -: f X(t) it (30)

0

This expression is obtained from Equation (A-16) by setting Qf = - 0

For a step torque, the total control torque "on-time" per cycle is:

12
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T 46LC (31)Ton = 0

This gives a limit cycle period of

TLC + T D4 LC _ 1) (32)

The total impulse expended by the control system per cycle is equal

to hI L,* The impulse per unit time, which gives a measure of fuel

consumption, is then:

Impulse/unit time = LC (33)TLC

If minimization of fuel consumption (Turing limit cycling is the goal

for a specific control problem, this is accomplished analytically

by partial differentiation of Equation (33) with respect to the

parameter of interest, or graphically by simply plotting Equation

(33).

3. Construction of Phase-Plane Trajectories From the Rate Diagram

In order to have a better understanding of the interpretation of a

rate diagram, let us construct a typical phase-plane trajectory

from the example rate diagram of Figure 8. Let us assume a step

control torque and an initial vehicle rotation at an angular rate

corresponding to point A of Figure 9. The response of the system

for this initial rate will now be followed. The vehicle rate at

13
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switch-off (point B) has a value that is opposite in sign to that

corresponding to point A. This means that the vehicle motion has

reversed direction. The rate corresponding to B will now remain

constant until again switch-on occurs. B, which is now considered

the initial rate, gives a final rate, C, at switch-off. C is pos-

itive, indicating that the vehicle is still rotating in the same

direction., but with a reduced magnitude. After switch-on again

occurs, the final rate becomes that corresponding to point D at

switch-off. The vehicle has now reversed direction. This is re-

peated for point E. It is again noted that control torque "on"

lines can be constructed in the phase-plane diagram. These lines

intersect the 0 axis at + D, and have a slope of -m, where m is

determined from eqiiation (27). If F(s) is expressed in the form of

Equation (3), or (A-1) of the Appendix, then m is given by:

1 (34)S A1 - B1 - TA

The slope of the switch-on line is simpl A B

For this special. case(step control torque) control torque "off' curves

can reaOily be constructed in the phase-plane, since the trajectories

are parabolic. However, in the more general case, where the control

torque is a function of time, the construction of these "off curves

becomes rather tedi ous since the vehicle attitude must be determined

at control torque removal. Numerical Integration may be necessary.

14
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4. Transient Response

Some general remarks can be made concerning the transient behavior

of the system. If the rate curve lies nerr, and is parallel, or

nearly parallel, to the minus-one line, then convergence is relatively

slow. Rapidity of convergence increases as the rate curve nears the

9 axis. Examples appear in Figure -0.
0

Convergence to the limit cycle for rates in the vicinity of a stable

limit cycle depends upon the slope and shape of the rate curve at

the intersection with the minus-one line. If the slope of the rate

curve approaches + 1 (perpendicular to the minus-one line) at the

intersection, convergence becomes slow. Also, if the slope of the

curve approaches - 1 (parallel to the minus-one line), convergence

becomes slow. Convergence to the limit cycle improves as the slope

of the rate curve approaches zero at the point of intersection.

Example rate diagrams with corresponding example phase-plane tra-

jectories appear in Figures 11, 12, and3 13.

DESIGN APPLICABILITY

Several basic problems arise if a systems approach is taken in the design

of a satellite or space vehicle. One is a "proper" choice of the various

actuating and sensing combinations which will satisfy the performance re-

quirements of the mission. In general this choice will not be unique. In

addition, the determination of "lesired" characteristics of the various

control system elements, and of "proper" signal processing confronts the

control engineer. The choice of a desipgn criterion, from which various

control system design configurations can be evaluated, plagues the control

15
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engineer because of the difficulty of divorcing the general problem from

the details of the mission and the operational concept, and the difficulty

in establishing a set of system "values" or absolute standards which allow

system "optimization". Whether this set of values or standards is the

"right" one is a rather philosophical problem in itself. Because of these

basic difficulties, control systems are not presently designed using such

a generalized "rational" synthesis approach. The control engineer is

forced to select tentative systems and conduct a performance analysis for

each system. A trade-off study is then conducted to compare the relative

merits of the tentative systems, and a final design is then chosen. This

final choice is in essence an intuitive one, in which the designer utilizes

his engineering "Judgment' or 'feel".

The aynthesis applicability of the rate diagram technique presented in

this paper is based upon this design approach. If, for specific control

system configurations, the effects of important parameter variations upon

system performance can be understood with the aid of such diagrams, the

control engineer can at least develop a "feel'', however crude it may be,

for the overall design problem. Experience and engineering Judgment are

still necessary in the final system design.

EXAMPLE CONTROL SYSTN

The effects upon system performance of an example control system are shown

in rate diagram form (Figures 14, 16, 18, and 20) for four cases of para-

meter variation.

The nominal system parameters chosen are:

16
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0 = 1.0 deg/sec2  (step function assumed)

TA M IR 0 0.05 sec

hOD -0-14m

F'(s)- 1 +

(Ir "+l) ( a + .e. 1)
n + n

Case 1. - Variation of Lead Time Constant (rl)

The effect of filter lead time constant variation upon the rate diagram

and liit cycle amplitude are shown in Figures 14 and 15. The filter

transfer function for this case is:

F(s) 
1

0.1 Tis + 1

Case 2. - Variation of Time Delay (rA =R )

7he e!'fect of time delay variation upon the rate diagram and limit cycle

amplitude Pre shown in Figures 16 and 17. The filter transfer function

for this case is:

F(s) = 5s + 1
.5s + 1

Case 3. " Variation of Hysteresis (hOD)

The effect of hysteresis variation is shown in Figures 18 and 19. The

filtek transfer function is:

17
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F(s) = 5s +~ 1
.5s + 1

Case 4. - Addition of Quadratic Lag

The effect of adding a quadratic lag to the system is shown in Figures

20 and 21. The filter transfer function is:

F(S) = l1s + 1
F ( s ) ( s + 1 2 + C +

(s + i) -L)
n n

CONCLUSIONS

The detailed truatment of the example control system shows the effectiveness

of this technique in designing space vehicle on-off control systems. As

filter parameters or control system characteristics are varied, the design

engineer "observes" the resulting changes in system behavior by noting the

corresponding changes in the rate diagram. This can give a general "feel"

fov system optimization in meeting the specified performance requirements

of the mission. The limit cycle derivations can readily be applied in cases

where fuel consumption during limit cycling is of prime interest.

A general design approach is suggested by specifying the desired rate

diagram characteristics and desigring a filter which will yield the de-

sired rate diagram, or at least a satisfactory approximation. This filter

synthesis would probably require computer techniques.

18
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SWITCH
VEHICLE

FILTERDYNAMICS

CONTROL T
F~)TORQUE TC I_JJ CHARACTER- s

Figure 1. System Block Diagram

io " '2

1. SWITCH CLOSURE

\k 2. TORQUE APPLICATION

go 3. SWITCH OPENING

it 3 4. TORQUE REMOVAL

- J4

Figure 2. J-xample I'ipse-Plane Trajectory

\1 \

3%
4

3 0

-~ 4

Figure 3. Example 1Hias-Plane Trajectory
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TORQUE SWITCH OPENING

SW ITCH
CLOSURE

Figure 4. Typical. Torque Characteristics

+6 -0

(a) STABLE (b) UNSTABLE

Figure 5. Rate Diagrams IndIicating a Stable antl Unstable System

.2

2

(o) SYMMETRICAL (b) UNSYMMETRICAL

Figure 6. Rate Diagrams Indicating LiLmit Cycles
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SWITCH-ON LINE

9LC '~ 2 TORQUE "ON" LINE
I (NEGATIVE

\ I ACCELERATION)

TORQUE "ON LINE _L
(POSITIVE -
ACCELERATION)

SWITCH-ON LINE

Figure 7. Typical idmit Cycle Phase-Plane Trajectory

D

"ON"/-ON LINE-GAIV
POSITIVETORRQEE

Figure 9. Typical Phase Plane Trajectory for Example System of Figure 8.
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go00

(a) SLOW (b) RAPID

Figure 10. Example Rate Diagrams Indicating Relatively

Slow and Rapid Convergence

LI I
CYL -

(o) RATE DIAGRAM (b) TYPICAL PHASE PLANE TRAJECTORY

Figure 11. E'xample Indicating Relatively Slow Convergence

In Vicinity of' Stable Limit Cycle
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(a) RATE D14GRAM - - -.. "

LIMIT CYCLE

(b) TYPICAL PHASE-PLANE TRAJECTORY

Figure 12. Example Indicating Relatively Slow Convergence

In Vicinity of Stable Limit Cycle

i0

Figure 13. Example Rate Diagram Indicating Rapid Convergence

In Vicinity of Stable Limit Cycle
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0.5

0

-0.5r______

-1.0

0 0.5 1.0 1.5 20

60 (DEG/ SEC)

Figure 14. Example Control System Rate Diagrams For

Various Values of Lead Time Constant, T

0.10

w

LJ0.05

0
0 5 10

i(SEC)

Figure 15. Limit Cyclec Rate Amplitude, 9IC vs. lead Time Constant, 71
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0 0-

-- 0.6

- 1.0

-1.5

0 0.5 1.0 1.5 2.0
So (EG/ SEC)

Figure 16. TOxample Control System Rate Diagrams For Various

Values of' Time Delay, -rA (whe!re -rA = R

0.10

wI 0.05
0

0 0.5 1.0

r 2r.(SEC)

Figure 17. Limit Cycle 1HAe Amplitude, LC vs. Time Delay, T A
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N90.

uJ 05

-I.0

0 05 1.0 1.5 20

9o (DEG/SEC)

Figure 13. I xample Control System Ra.te Diagrams For

Variou3s V-luer of' Hysteresis, h@D

0 .10 0 "

w

wU

• b 0.05

0

0 0.5 10
h80 (DEG)

Figure 19. Limit Cyc.le Bite tPnplitm(lc, LC vs- Tyer.;tsis, h@D
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0.5

0n 1.

0n-0

-0.5

-1.0 -w 01

0051.0 1.5 2.0
i. (DEG/SEC)

Figure 20. JAxample Control System Rate Diagrams vs. Quadratic

lag Natural Frequency, w~ (5

0.10

01

0 51

w. (RAO/SEC)

Figure 21. Limit Cycle Raite Ampitude, 9 LC vs~. ()iadratic laa Frequency, w
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APPENDIX

Derivation of Equations for Rate Diagram Construction

Procedure

In co astructing a rate diagram an analytical exprersion relating the

vehicle angular rate at control torque removal to the rate at appli-

cation is first derived. This is accomplished by determining the "on-

time" of the control torque, whereby the change in vehicle angular rate

can be determined from a knowledge of the torque characteristics. A

plot of the rate at torque removal versus the rate at torque application

Is the rate diagram.

Assumptions

The following derivations are based upon the assumptions that:

1. All transients in the system have effectively decayed prior to

switch-on. In other words, the "off-time" of the control torque

is long compared to the system time constants.

2. The vehicle dynamics can be represented as a free rigid body in

which the acceleration is proportional to the applied torque.

3. The control system characteristics are identical for both positive

or negative vehicle rotations.

For simplification, the commanded vehicle attitude, 9c' is assumed to be

zero.

28
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Derivation

Let the filter transfer function, F(s) be expressed as the ratio of the

two polynomials:

Am + A m-.sm 1 + . . .+ A1s + 1
F(s) n-(A-)

Bns n + Bn. a . . . + BIS + 1

Since no torque is applied to the vehicle prior to switch-on, the vehicle

rotates at a constant rate, 9o' The filter input, then, is simply a ramp.

The steady-state output of the filter, e ss to the ramp input, 9o, is:

ess= [ 4. (Al- BI) @o] (A-2)

and

-9ss = 0 o (A-3)

It is seen that the filter otnt leads the input by an amount 9o(A- B1),

and has the same slope.

Consider the case were switch-on occurs when e - n. Control torque

application occurs tA stconds .later, at ithich time:

A(A-4)

0 - (A-5)

29
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Now let time begin at control torque application. The differential

equation describing the system response is:

p2 D(p) ect) - N(p) X (t) (A-6)

where d
dt

x I

Tc = control torque

I = vehicle moment of inertia

The initial conditions for the filter output are:

E0 = A ( D + 0 A)  (A-7)

o - 0 (A-8)

dn 0 for n >l (A-9)

dt I

t=O

Laplace transformation of' equation (A-6) then gives:

D(s) [ 2 E(s) - s - = - [N(P) A(t)] (A-10)

Solving for E(s);
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-0(s) D o TA 0
+ +-p 01(-1

s s s D(s)

Then:

- e(t) = OD + 6oA + 60t 4 g(t) (A-12)

where 1~t xLNif ~ LI A (A-13)
g~t) x a2 D(S)

If A (t) is a step function of magnitude X.' then:

Now switch-off will occur when -E(t) - -D(1-h). SubstLtutixv this into

equation (A-12) gives:

g(t) = - (h9D + 60 TA - Ot) (A-15)

The control torque 'on-time" is equal to the time, to, which satisfies

equation (A-15) for the given value of o0, plus the time delay, TR.. The

sritch "on-time" is t + A'

The vehicle rate at torque removal, , is given by:

to + R

f = 6 0 4. f A(It (A-16)
o R

0

31



89&-0005-RU-ooo

For X (t) a step function of magnitud.e Xo

@f "- 0 - X0 (t O -0 '1 tR) (A-17)

For a given value of 6o' t can be determined from equation (A-15) directly,

if the expression for g(t) is simply enough, by iterative methods other-

wise, or graphically by plotting g(t) versus time and constr cting the line

represented by the right hand side of equation (A-15) - the solution being

the intqrsection of the two plots. An indirect, but more convenient method,

hcwever, is to treat to as the variable. For a given value of t0  0 is

evalimted using equation (A-15). For this v,J!ue of t and the corresond-
0

ir* value of %o 0 f is determined from equation (A-J.6). 0f can then befnf

plotted versus 0, yielding the rate diagram.
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